When and how did plate tectonics begin? Theoretical and empirical considerations
نویسنده
چکیده
Plate tectonics is the horizontal motion of Earth’s thermal boundary layer (lithosphere) over the convecting mantle (asthenosphere) and is mostly driven by lithosphere sinking in subduction zones. Plate tectonics is an outstanding example of a self organizing, far from equilibrium complex system (SOFFECS), driven by the negative buoyancy of the thermal boundary layer and controlled by dissipation in the bending lithosphere and viscous mantle. Plate tectonics is an unusual way for a silicate planet to lose heat, as it exists on only one of the large five silicate bodies in the inner solar system. It is not known when this mode of tectonic activity and heat loss began on Earth. All silicate planets probably experienced a short-lived magma ocean stage. After this solidified, stagnant lid behavior is the common mode of planetary heat loss, with interior heat being lost by delamination and “hot spot” volcanism and shallow intrusions. Decompression melting in the hotter early Earth generated a different lithosphere than today, with thicker oceanic crust and thinner mantle lithosphere; such lithosphere would take much longer than at present to become negatively buoyant, suggesting that plate tectonics on the early Earth occurred sporadically if at all. Plate tectonics became sustainable (the modern style) when Earth cooled sufficiently that decompression melting beneath spreading ridges made thin oceanic crust, allowing oceanic lithosphere to become negatively buoyant after a few tens of millions of years. Ultimately the question of when plate tectonics began must be answered by information retrieved from the geologic record. Criteria for the operation of plate tectonics includes ophiolites, blueschist and ultra-high pressure metamorphic belts, eclogites, passive margins, transform faults, paleomagnetic demonstration of different motions of different cratons, and the presence of diagnostic geochemical and isotopic indicators in igneous rocks. This record must be interpreted individually; I interpret the record to indicate a progression of tectonic styles from active Archean tectonics and magmatism to something similar to plate tectonics at ~1.9 Ga to sustained, modern style plate tectonics with deep subduction―― and powerful slab pull―― beginning in Neoproterozoic time.
منابع مشابه
Tectonics of early Earth: Some geodynamic considerations
Today, plate tectonics is the dominant tectonic style on Earth, but in a hotter Earth tectonics may have looked different due to the presence of more melting and associated compositional buoyancy as well as the presence of a weaker mantle and lithosphere. Here we review the geodynamic constraints on plate tectonics and proposed alternatives throughout Earth’s history. Observations suggest a 100...
متن کاملInitiation and Evolution of Plate Tectonics on Earth: Theories and Observations
The inception of plate tectonics on Earth and its subsequent evolution are discussed on the basis of theoretical considerations and observational constraints. The likelihood of plate tectonics in the past depends on what mechanism is responsible for the relatively constant surface heat flux that is indicated by the likely thermal history of Earth. The continuous operation of plate tectonics thr...
متن کاملToward Understanding the Conditions Required for Plate Tectonics to Occur on Earth-
Introduction. Previous studies of initiation of plate tectonics were concerned mostly with the present-day Earth where plate tectonics is actively occurring [1-3]. Understanding of how plate tectonics starts and can be sustained for a long time on an Earth-like planet is a different problem. Investigation of this problem began only recently [4-6]. This problem is also important for understandin...
متن کاملEmerging Possibilities and Insuperable Limitations of Exogeophysics: the Example of Plate Tectonics
To understand the evolution and the habitability of any rocky exoplanet demands detailed knowledge about its geophysical state and history—such as predicting the tectonic mode of a planet. Yetno astronomical observation can directly confirm or rule out the occurrence of plate tectonics on a given exoplanet. Moreover, the field of plate tectonics is still young—questioning whether we should stu...
متن کاملThermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth
[1] The net influx of water into the deep mantle by plate tectonics has been poorly constrained because it is difficult to quantify how efficiently subducting slabs are devolatilized on a global scale. The significance of deep water cycle in the Earth history is similarly ambiguous because it depends critically on when plate tectonics started and how it evolved through time. Here I show that, u...
متن کامل